Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -iodido-bis[(*N*-morpholino-2pyridylmethanimine- $\kappa^2 N, N'$)copper(I)] acetonitrile solvate

Saeed Dehghanpour,^a Frank Rominger^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, ^bInstitute of Organic Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 10 August 2007; accepted 10 August 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.080; data-to-parameter ratio = 20.2.

In the crystal structure of the title compound, $[Cu_2I_2(C_{10}H_{13}-N_3O)_2]\cdot CH_3CN$, the Schiff base chelates the Cu^I atom, which is linked to two I atoms in a tetrahedral geometry; the covalent Cu–I bond is only marginally shorter than the dative Cu–I bond. The dinuclear molecule lies about a centre of inversion and the solvent molecule on a twofold rotation axis.

Related literature

For the synthesis of the Schiff base ligand, see Wiley *et al.* (1959). There are only two reports of metal adducts of this ligand (not crystallographic studies): see Nasser-Eddine *et al.* (2004) for the copper(I) bromide adduct, and Nikolcheva *et al.* (2003) for the platinum(II) dichloride adduct.

Experimental

Crystal data

 $[Cu_2I_2(C_{10}H_{13}N_3O)_2] \cdot C_2H_3N$ $M_r = 804.40$ Monoclinic, C2/c a = 16.0206 (2) Å b = 10.2820 (1) Å c = 17.2086 (1) Å $\beta = 95.329$ (1)°

Data collection

Bruker SMART area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.468, T_{\rm max} = 0.836$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.080$ S = 1.043247 reflections $V = 2822.41 (5) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 3.73 mm^{-1} T = 200 (2) K 0.24 \times 0.18 \times 0.05 mm

13511 measured reflections 3247 independent reflections 2897 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.050$

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank the Alzahra University Research Council, the University of Heidelberg and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2476).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (1999). *SMART* (Version 4.50A) and *SAINT* (Version 4.50A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Nasser-Eddine, M., Delaite, C., Dumas, P., Vataj, R. & Louati, A. (2004). Macromol. Mater. Eng. 289, 204–207.
- Nikolcheva, L. G., Vogels, C. M., Stefan, R. A., Darwish, H. A., Duffy, S. J., Ireland, R. J., Decken, A., Hudson, R. H. & Westcott, S. A. (2003). *Can. J. Chem.* 81, 269–274.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.
- Wiley, R. H., White, H. K. & Irick, G. (1959). J. Org. Chem. 24, 1784-1786.

supplementary materials

Acta Cryst. (2007). E63, m2377 [doi:10.1107/S1600536807039670]

Di- μ -iodido-bis[(N-morpholino-2-pyridylmethanimine- $\kappa^2 N, N'$)copper(I)] acetonitrile solvate

S. Dehghanpour, F. Rominger and S. W. Ng

Comment

Copper(I) iodide forms a large number of adducts with Schiff bases. However, there are no structural studies on the morpholine-2-pyridyl-methanimine. In the title compound, the Schiff base chelates to the copper(I) atom, which is linked to two iodine atoms in a tetrahedral geometry; the covalent Cu–I bond is only marginally shorter than the dative Cu–I bond (Table 1) in the crystal structure of $(C_{10}H_{13}N_3O)_2(CuI)_2$ CH₃CN. The dinuclear molecule lies about a center-of-inversion whereas the solvent molecule lies on a twofold rotation axis.

Experimental

Copper(I) iodide (1 mmol) and morpholine-2-pyridylmethanimine (1 mmol) were dissolved in acetonitrile under a nitrogen atmosphere. The solvent was partially removed and diethyl ether vapor diffused into the concentrated solution. Orange crystals were obtained in 90% yield. Calc. for $C_{20}H_{26}Cu_2I_2N_6O_2$:*C* 31.47, H 3.43, N 11.01%. Found: C 31.45, H 3.40, N 11.06%.

Refinement

The carbon-bound hydrogen atoms were placed at calculated positions (C–H 0.93 - 0.99 Å), and were included in the refinement in the riding model approximation, with U(H) set to $1.2 - 1.5 U_{eq}(C)$. The methyl group of the acetonitrile molecule is disordered over two equally occupied sites. The final difference Fourier map had a large peak/hole in the vicinity of the iodine atom.

Figures

Fig. 1. Thermal ellipsoid plot of $(C_{10}H_{13}N_3O)_2(CuI)_2$ CH₃CN drawn at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius. Symmetry code (i): 1 - x, 1 - y, 1 - z.

Di- μ -iodido-bis[(*N*-morpholino-2-pyridylmethanimine- $\kappa^2 N$,*N*¹)copper(I)] acetonitrile solvate

Crystal data	
$[Cu_2I_2(C_{10}H_{13}N_3O)_2]\cdot C_2H_3N$	$F_{000} = 1560$
$M_r = 804.40$	$D_{\rm x} = 1.893 {\rm Mg m}^{-3}$

Monoclinic, *C*2/*c* Hall symbol: -C 2yc a = 16.0206 (2) Å b = 10.2820 (1) Å c = 17.2086 (1) Å $\beta = 95.329$ (1)° V = 2822.41 (5) Å³ Z = 4

Data collection

Bruker SMART area-detector diffractometer	3247 independent reflections
Radiation source: fine-focus sealed tube	2897 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.050$
T = 200(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 20$
$T_{\min} = 0.468, T_{\max} = 0.836$	$k = -13 \rightarrow 13$
13511 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0356P)^2 + 6.1582P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
3247 reflections	$\Delta \rho_{max} = 1.01 \text{ e} \text{ Å}^{-3}$
161 parameters	$\Delta \rho_{min} = -1.03 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

											.7	
Fractional	atomic	coordinates	and is	otropic	or ea	nuivalent	isotron	nic dis	placement	narameters ((\check{A}^2))
1		000.00000000000000000000000000000000000			0. 00	100000000000000000000000000000000000000	1001.00				/	

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Cu1	0.55574 (2)	0.41824 (4)	0.48182 (2)	0.03299 (11)	
I1	0.600440 (12)	0.60525 (2)	0.576912 (13)	0.03845 (9)	
01	0.69807 (18)	0.6939 (3)	0.24161 (16)	0.0525 (7)	
N1	0.59867 (15)	0.2310 (2)	0.50200 (15)	0.0302 (5)	
N2	0.64685 (15)	0.4059 (2)	0.39882 (14)	0.0274 (5)	
N3	0.67489 (16)	0.5071 (2)	0.35742 (15)	0.0309 (5)	
N4	0.5000	0.9807 (8)	0.2500	0.135 (4)	
C1	0.5713 (2)	0.1401 (3)	0.5497 (2)	0.0395 (7)	

H1	0.5306	0.1643	0.5838	0.047*	
C2	0.5995 (2)	0.0129 (3)	0.5513 (2)	0.0433 (8)	
H2	0.5778	-0.0489	0.5853	0.052*	
C3	0.6595 (2)	-0.0229 (3)	0.5030 (2)	0.0421 (8)	
Н3	0.6803	-0.1094	0.5034	0.051*	
C4	0.6886 (2)	0.0692 (3)	0.45417 (19)	0.0348 (7)	
H4	0.7303	0.0470	0.4207	0.042*	
C5	0.65638 (17)	0.1957 (3)	0.45415 (16)	0.0271 (6)	
C6	0.68527 (18)	0.2951 (3)	0.40212 (17)	0.0278 (6)	
H6	0.7307	0.2789	0.3717	0.033*	
C7	0.7327 (2)	0.4817 (3)	0.29850 (18)	0.0342 (6)	
H7A	0.7036	0.4332	0.2542	0.041*	
H7B	0.7803	0.4284	0.3211	0.041*	
C8	0.7643 (2)	0.6107 (3)	0.2703 (2)	0.0456 (8)	
H8A	0.7979	0.6544	0.3139	0.055*	
H8B	0.8014	0.5946	0.2284	0.055*	
C9	0.6470 (3)	0.7216 (4)	0.3030 (3)	0.0560 (10)	
H9A	0.6020	0.7828	0.2839	0.067*	
H9B	0.6814	0.7639	0.3466	0.067*	
C10	0.6084 (2)	0.5989 (3)	0.3320 (2)	0.0453 (9)	
H10A	0.5752	0.6197	0.3761	0.054*	
H10B	0.5704	0.5597	0.2897	0.054*	
C11	0.5000	1.0891 (7)	0.2500	0.0634 (17)	
C12	0.5000	1.2277 (6)	0.2500	0.0564 (14)	
H12A	0.4421	1.2595	0.2474	0.085*	0.50
H12B	0.5267	1.2595	0.2047	0.085*	0.50
H12C	0.5311	1.2595	0.2980	0.085*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0308 (2)	0.02673 (19)	0.0425 (2)	0.00814 (14)	0.00937 (16)	-0.00119 (15)
I1	0.03060 (13)	0.03548 (13)	0.04833 (15)	0.00547 (8)	-0.00136 (9)	-0.01112 (8)
01	0.0623 (16)	0.0444 (14)	0.0523 (15)	-0.0009 (12)	0.0136 (13)	0.0198 (12)
N1	0.0269 (12)	0.0278 (12)	0.0356 (13)	0.0044 (9)	0.0018 (10)	0.0041 (10)
N2	0.0281 (12)	0.0240 (11)	0.0303 (12)	0.0011 (9)	0.0040 (10)	0.0011 (9)
N3	0.0345 (13)	0.0273 (12)	0.0317 (12)	0.0028 (10)	0.0077 (10)	0.0042 (10)
N4	0.110 (6)	0.059 (5)	0.239 (12)	0.000	0.024 (7)	0.000
C1	0.0387 (17)	0.0377 (17)	0.0425 (18)	0.0016 (14)	0.0058 (14)	0.0101 (14)
C2	0.0465 (19)	0.0343 (17)	0.0476 (19)	-0.0028 (14)	-0.0036 (15)	0.0134 (15)
C3	0.0484 (19)	0.0254 (15)	0.0499 (19)	0.0067 (14)	-0.0098 (15)	0.0039 (13)
C4	0.0342 (16)	0.0285 (14)	0.0403 (17)	0.0102 (12)	-0.0027 (13)	-0.0026 (12)
C5	0.0261 (13)	0.0239 (13)	0.0300 (14)	0.0041 (10)	-0.0039 (11)	-0.0025 (10)
C6	0.0278 (13)	0.0258 (13)	0.0299 (14)	0.0032 (11)	0.0036 (11)	-0.0049 (11)
C7	0.0384 (16)	0.0348 (16)	0.0306 (15)	0.0002 (13)	0.0103 (12)	-0.0009 (12)
C8	0.049 (2)	0.046 (2)	0.0441 (19)	-0.0056 (15)	0.0149 (16)	0.0072 (15)
C9	0.064 (2)	0.0336 (18)	0.073 (3)	0.0077 (17)	0.020 (2)	0.0157 (18)
C10	0.0424 (19)	0.0364 (18)	0.059 (2)	0.0099 (14)	0.0142 (17)	0.0162 (15)

supplementary materials

C11	0.044 (3)	0.056 (4)	0.091 (5)		0.000	0.015 (3)	0.000	
C12	0.064 (4)	0.055 (3)	0.052 (3)		0.000	0.013 (3)	0.000	
Geometric parameters (Å, °)								
Cu1—N1		2.063 (2)		С3—Н3			0.9500	
Cu1—N2		2.139 (2)		C4—C5			1.399 (4)	
Cu1—Cu1 ⁱ		2.5719 (7)		C4—H4			0.9500	
Cu1—I1		2.5827 (4)		С5—С6			1.462 (4)	
Cu1—I1 ⁱ		2.6211 (4)		С6—Н6			0.9500	
I1—Cu1 ⁱ		2.6211 (4)		С7—С8			1.516 (4)	
O1—C8		1.415 (5)		С7—Н7	А		0.9900	
O1—C9		1.423 (5)		С7—Н7	В		0.9900	
N1—C5		1.344 (4)		C8—H8	А		0.9900	
N1—C1		1.345 (4)		C8—H8	В		0.9900	
N2—C6		1.293 (4)		C9—C1	0		1.510 (5)	
N2—N3		1.361 (3)		С9—Н9	А		0.9900	
N3—C7		1.459 (4)		С9—Н9	В		0.9900	
N3—C10		1.459 (4)		С10—Н	10A		0.9900	
N4—C11		1.114 (9)		С10—Н	10B		0.9900	
C1—C2		1.383 (5)		C11—C	12		1.425 (9)	
C1—H1		0.9500		С12—Н	12A		0.9800	
C2—C3		1.378 (5)		С12—Н	12B		0.9800	
C2—H2		0.9500		С12—Н	12C		0.9800	
C3—C4		1.376 (5)						
N1—Cu1—N2		79.59 (9)		C4—C5-	—C6		120.8 (3)	
N1—Cu1—Cu1 ⁱ		142.87 (8)		N2-C6	—C5		117.8 (3)	
N2—Cu1—Cu1 ⁱ		137.20 (7)		N2-C6	—Н6		121.1	
N1—Cu1—I1		121.31 (7)		C5—C6-	—Н6		121.1	
N2—Cu1—I1		107.53 (7)		N3-C7-	—C8		108.6 (3)	
Cu1 ⁱ —Cu1—I1		61.128 (16)		N3-C7-	—H7A		110.0	
N1—Cu1—I1 ⁱ		105.69 (7)		C8—C7-	—H7A		110.0	
N2—Cu1—I1 ⁱ		115.04 (7)		N3—C7-	—H7B		110.0	
Cu1 ⁱ —Cu1—I1 ⁱ		59.638 (16)		C8—C7-	—H7B		110.0	
I1—Cu1—I1 ⁱ		120.766 (14)		H7A—C	27—Н7В		108.4	
Cu1—I1—Cu1 ⁱ		59.234 (14)		O1—C8	—C7		112.2 (3)	
C8—O1—C9		109.0 (3)		01-C8	—H8A		109.2	
C5—N1—C1		117.9 (3)		C7—C8-	—H8A		109.2	
C5—N1—Cu1		112.77 (19)		O1—C8	—H8B		109.2	
C1—N1—Cu1		129.0 (2)		C7—C8-	—H8B		109.2	
C6—N2—N3		121.2 (3)		Н8А—С	C8—H8B		107.9	
C6—N2—Cu1		112.01 (19)		O1—C9	—C10		111.1 (3)	
N3—N2—Cu1		125.65 (18)		O1—C9	—H9A		109.4	
N2—N3—C7		119.2 (2)		C10—C	9—Н9А		109.4	
N2—N3—C10		112.6 (2)		O1—C9	—H9B		109.4	
C7—N3—C10		113.6 (3)		C10—C	9—Н9В		109.4	
N1—C1—C2		123.1 (3)		Н9А—С	29—Н9В		108.0	

N1—C1—H1	118.5	N3—C10—C9	109.2 (3)
C2—C1—H1	118.5	N3—C10—H10A	109.8
C3—C2—C1	119.0 (3)	C9—C10—H10A	109.8
C3—C2—H2	120.5	N3—C10—H10B	109.8
C1—C2—H2	120.5	C9—C10—H10B	109.8
C4—C3—C2	118.7 (3)	H10A-C10-H10B	108.3
С4—С3—Н3	120.7	N4—C11—C12	180.000 (3)
С2—С3—Н3	120.7	C11—C12—H12A	109.5
C3—C4—C5	119.6 (3)	C11—C12—H12B	109.5
C3—C4—H4	120.2	H12A—C12—H12B	109.5
С5—С4—Н4	120.2	C11—C12—H12C	109.5
N1—C5—C4	121.7 (3)	H12A—C12—H12C	109.5
N1—C5—C6	117.4 (2)	H12B—C12—H12C	109.5
N1—Cu1—I1—Cu1 ⁱ	-136.91 (9)	C5—N1—C1—C2	-0.2 (5)
N2—Cu1—I1—Cu1 ⁱ	134.79 (7)	Cu1—N1—C1—C2	172.5 (3)
I1 ⁱ —Cu1—I1—Cu1 ⁱ	0.0	N1-C1-C2-C3	1.1 (5)
N2—Cu1—N1—C5	-2.1 (2)	C1—C2—C3—C4	-0.7 (5)
Cu1 ⁱ —Cu1—N1—C5	171.24 (14)	C2—C3—C4—C5	-0.5 (5)
I1—Cu1—N1—C5	-106.40 (19)	C1—N1—C5—C4	-1.1 (4)
I1 ⁱ —Cu1—N1—C5	111.17 (19)	Cu1—N1—C5—C4	-174.9 (2)
N2—Cu1—N1—C1	-175.1 (3)	C1—N1—C5—C6	179.5 (3)
Cu1 ⁱ —Cu1—N1—C1	-1.8 (4)	Cu1—N1—C5—C6	5.7 (3)
I1—Cu1—N1—C1	80.6 (3)	C3—C4—C5—N1	1.5 (5)
I1 ⁱ —Cu1—N1—C1	-61.8 (3)	C3—C4—C5—C6	-179.2 (3)
N1—Cu1—N2—C6	-2.0 (2)	N3—N2—C6—C5	173.9 (2)
Cu1 ⁱ —Cu1—N2—C6	-176.06 (16)	Cu1—N2—C6—C5	5.5 (3)
I1—Cu1—N2—C6	117.78 (19)	N1C5C6N2	-7.8 (4)
I1 ⁱ —Cu1—N2—C6	-104.5 (2)	C4—C5—C6—N2	172.8 (3)
N1—Cu1—N2—N3	-169.6 (2)	N2—N3—C7—C8	-171.4 (3)
Cu1 ⁱ —Cu1—N2—N3	16.3 (3)	C10—N3—C7—C8	52.2 (4)
I1—Cu1—N2—N3	-49.9 (2)	C9—O1—C8—C7	61.5 (4)
I1 ⁱ —Cu1—N2—N3	87.8 (2)	N3—C7—C8—O1	-56.1 (4)
C6—N2—N3—C7	18.0 (4)	C8—O1—C9—C10	-61.5 (4)
Cu1—N2—N3—C7	-175.4 (2)	N2—N3—C10—C9	167.4 (3)
C6—N2—N3—C10	154.8 (3)	C7—N3—C10—C9	-53.2 (4)
Cu1—N2—N3—C10	-38.6 (4)	O1-C9-C10-N3	57.0 (5)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$			

